Regressor
PoniardRegressor
inherits from PoniardBaseEstimator
, which sets up most of the funcionality, so you should probably read the those docs first.
PoniardRegressor
PoniardRegressor (estimators:Union[Dict[str,sklearn.base.RegressorMixin], Sequence[sklearn.base.RegressorMixin],NoneType]=None, m etrics:Union[str,Dict[str,Callable],Sequence[str],NoneT ype]=None, preprocess:bool=True, custom_preprocessor:Un ion[NoneType,sklearn.pipeline.Pipeline,sklearn.base.Tra nsformerMixin]=None, cv:Union[int,sklearn.model_selecti on._split.BaseCrossValidator,sklearn.model_selection._s plit.BaseShuffleSplit,Sequence]=None, verbose:int=0, random_state:Optional[int]=None, n_jobs:Optional[int]=None, plugins:Optional[Sequence[Any]]=None, plot_options:Opti onal[poniard.plot.plot_factory.PoniardPlotFactory]=None )
Cross validate multiple regressors, rank them, fine tune them and ensemble them.
PoniardRegressor takes a list/dict of scikit-learn estimators and compares their performance on a list/dict of scikit-learn metrics using a predefined scikit-learn cross-validation strategy.
Type | Default | Details | |
---|---|---|---|
estimators | typing.Union[typing.Dict[str, sklearn.base.RegressorMixin], typing.Sequence[sklearn.base.RegressorMixin], NoneType] | None | Estimators to evaluate. |
metrics | typing.Union[str, typing.Dict[str, typing.Callable], typing.Sequence[str], NoneType] | None | Metrics to compute for each estimator. This is more restrictive than sklearn’s scoring parameter, as it does not allow callable scorers. Single strings are cast to lists automatically. |
preprocess | bool | True | If True, impute missing values, standard scale numeric data and one-hot or ordinal encode categorical data. |
custom_preprocessor | typing.Union[NoneType, sklearn.pipeline.Pipeline, sklearn.base.TransformerMixin] | None | Preprocessor used instead of the default preprocessing pipeline. It must be able to be included directly in a scikit-learn Pipeline. |
cv | typing.Union[int, sklearn.model_selection._split.BaseCrossValidator, sklearn.model_selection._split.BaseShuffleSplit, typing.Sequence] | None | Cross validation strategy. Either an integer, a scikit-learn cross validation object, or an iterable. |
verbose | int | 0 | Verbosity level. Propagated to every scikit-learn function and estimator. |
random_state | typing.Optional[int] | None | RNG. Propagated to every scikit-learn function and estimator. The default None sets random_state to 0 so that cross_validate results are comparable. |
n_jobs | typing.Optional[int] | None | Controls parallel processing. -1 uses all cores. Propagated to every scikit-learn function and estimator. |
plugins | typing.Optional[typing.Sequence[typing.Any]] | None | Plugin instances that run in set moments of setup, fit and plotting. |
plot_options | typing.Optional[poniard.plot.plot_factory.PoniardPlotFactory] | None | :class:poniard.plot.plot_factory.PoniardPlotFactory instance specifying Plotly format options or None, which sets the default factory. |
PoniardRegressor
implements PoniardClassifier._build_cv
, PoniardClassifier._build_metrics
and PoniardClassifier._default_estimators
.
PoniardRegressor._build_cv
PoniardRegressor._build_cv ()
PoniardRegressor._build_metrics
PoniardRegressor._build_metrics ()
Build metrics.
PoniardRegressor._default_estimators
PoniardRegressor._default_estimators ()