Regressor

PoniardRegressor inherits from PoniardBaseEstimator, which sets up most of the funcionality, so you should probably read the those docs first.

source

PoniardRegressor

 PoniardRegressor (estimators:Union[Dict[str,sklearn.base.RegressorMixin],
                   Sequence[sklearn.base.RegressorMixin],NoneType]=None, m
                   etrics:Union[str,Dict[str,Callable],Sequence[str],NoneT
                   ype]=None, preprocess:bool=True, custom_preprocessor:Un
                   ion[NoneType,sklearn.pipeline.Pipeline,sklearn.base.Tra
                   nsformerMixin]=None, cv:Union[int,sklearn.model_selecti
                   on._split.BaseCrossValidator,sklearn.model_selection._s
                   plit.BaseShuffleSplit,Sequence]=None, verbose:int=0,
                   random_state:Optional[int]=None,
                   n_jobs:Optional[int]=None,
                   plugins:Optional[Sequence[Any]]=None, plot_options:Opti
                   onal[poniard.plot.plot_factory.PoniardPlotFactory]=None
                   )

Cross validate multiple regressors, rank them, fine tune them and ensemble them.

PoniardRegressor takes a list/dict of scikit-learn estimators and compares their performance on a list/dict of scikit-learn metrics using a predefined scikit-learn cross-validation strategy.

Type Default Details
estimators typing.Union[typing.Dict[str, sklearn.base.RegressorMixin], typing.Sequence[sklearn.base.RegressorMixin], NoneType] None Estimators to evaluate.
metrics typing.Union[str, typing.Dict[str, typing.Callable], typing.Sequence[str], NoneType] None Metrics to compute for each estimator. This is more restrictive than sklearn’s scoring
parameter, as it does not allow callable scorers. Single strings are cast to lists
automatically.
preprocess bool True If True, impute missing values, standard scale numeric data and one-hot or ordinal
encode categorical data.
custom_preprocessor typing.Union[NoneType, sklearn.pipeline.Pipeline, sklearn.base.TransformerMixin] None Preprocessor used instead of the default preprocessing pipeline. It must be able to be
included directly in a scikit-learn Pipeline.
cv typing.Union[int, sklearn.model_selection._split.BaseCrossValidator, sklearn.model_selection._split.BaseShuffleSplit, typing.Sequence] None Cross validation strategy. Either an integer, a scikit-learn cross validation object,
or an iterable.
verbose int 0 Verbosity level. Propagated to every scikit-learn function and estimator.
random_state typing.Optional[int] None RNG. Propagated to every scikit-learn function and estimator. The default None sets
random_state to 0 so that cross_validate results are comparable.
n_jobs typing.Optional[int] None Controls parallel processing. -1 uses all cores. Propagated to every scikit-learn
function and estimator.
plugins typing.Optional[typing.Sequence[typing.Any]] None Plugin instances that run in set moments of setup, fit and plotting.
plot_options typing.Optional[poniard.plot.plot_factory.PoniardPlotFactory] None :class:poniard.plot.plot_factory.PoniardPlotFactory instance specifying Plotly format
options or None, which sets the default factory.

PoniardRegressor implements PoniardClassifier._build_cv, PoniardClassifier._build_metrics and PoniardClassifier._default_estimators.


source

PoniardRegressor._build_cv

 PoniardRegressor._build_cv ()

source

PoniardRegressor._build_metrics

 PoniardRegressor._build_metrics ()

Build metrics.


source

PoniardRegressor._default_estimators

 PoniardRegressor._default_estimators ()